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TRENDS VERSUS RANDOM WALKS IN TIME SERIES ANALYSIS

BY STEVEN N. DURLAUF AND PETER C. B. PHILLIPS!

This paper studies the effects of spurious detrending in regression. The asymptotic
behavior of traditional least squares estimators and tests is examined in the context of
models where the generating mechanism is systematically misspecified by the presence of
deterministic time trends. Most previous work on the subject has relied upon Monte Carlo
studies to understand the issues involved in detrending data that are generated by
integrated processes and our analytical results help to shed light on many of the simulation
findings. Standard F tests and Hausman tests are shown to inadequately discriminate
between the competing hypotheses. Durbin-Watson statistics, on the other hand, are shown
to be valuable measures of series stationarity. The asymptotic properties of regressions and
excess volatility tests with detrended integrated time series are also explored.

KEYwWORDS: Excess volatility tests, integrated processes, misspecification, specification
tests, spurious detrending.

1. INTRODUCTION

TRADITIONAL ANALYSES of economic time series frequently rely on the assump-
tion that the time series in question are stationary, ergodic processes. Stationarity
and ergodicity together with a few other technical conditions ensure that the first
and second sample moments of such series satisfy a strong law of large numbers
(SLLN), and that suitably standardized sums of elements of the series obey a
central limit theorem (CLT). However, the assumptions of the traditional theory
do not provide much solace to the empirical worker. Even casual examination of
such time series as GNP reveals that these series do not possess constant means.
Similarly, the embedding of such disparate economic events as the great depres-
sion and OPEC price shocks in a single data realization renders the stationarity
assumption dubious at best.

Time series research has not been insensitive to the needs of empirical workers.
In fact, time series methodology has extensively examined the question of
modelling processes which are stationary about a deterministic trend; and
deterministic trends are capable of dealing with nonstationary means. The
methodology of stationary time series analysis then extends in a straightforward
fashion to such trending series. The approach is well exposited in the work of
Grenander and Rosenblatt (1957) and Anderson (1971). The nonstationarity of
second moments has received less attention. However, recent work by White
(1980) and White and Domowitz (1984) in econometrics has provided important
results on time series modelling with heterogeneously distributed errors. As a
result of these generalizations, empirical workers have been generally satisfied
with the approach of modelling economic time series as processes with determin-
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istic trends. Recently, however, some growing dissatisfaction has been expressed
with the assumption that economic time series typically decompose into de-
terministic trends and stationary (or ergodic) components. In particular, Nelson
and Plosser (1982) argue that a large number of macroeconomic aggregates, such
as GNP, are better modelled as random walks or integrated processes of order
one (I(1) processes), rather than stationary (or ergodic) processes with a trend.
An integrated process specification for time series has several important statisti-
cal implications. One of these is that the potential cost of misspecification of the
generating mechanism is often substantial. A number of papers in the literature
have already examined the effects of spuriously detrending integrated series.
Thus, Nelson and Kang (1981, 1983) argue that the regression of a driftless
random walk against a time trend will result in the inappropriate inference that
the trend is significant. Further, detrended random walks will exhibit spurious
correlation. Similar results for a different class of models have been generated by
Hoffman, Low, and Schlagenhauf (1984) and Mankiw and Shapiro (1985, 1986).
These studies have all obtained results by Monte Carlo simulations.

Integrated processes also pose problems for the empirical worker because of
the probabilistic properties of the series. In particular, conventional strong laws
and central limit theory do not apply to standardized sums of the realizations of
an integrated process. These probabilistic properties and their statistical implica-
tions have been extensively analyzed in recent work by Phillips (1986, 1987a,
1987b) and Phillips and Durlauf (1986).

The aim of the present paper is to analyze the effects of misspecification of the
generating mechanism of a nonstationary time series in terms of deterministic
trends. Our approach is based on the recent study of spurious regressions by
Phillips (1986). The techniques developed there and in the other papers cited in
the previous paragraph may be directly applied to study the effects of spurious
detrending in regression. In this paper we provide an explicit analytical solution
to the asymptotic behavior of spuriously detrended regressions and thereby help
to unify and explain many of the disparate Monte Carlo results that presently
exist in the literature.

The paper is organized as follows: Section 2 derives the statistical properties of
time trend regressions when the time series is in reality an integrated process.
Section 3 extends these results to the case of integrated processes with drift.
Section 4 provides several useful theorems on hypothesis testing in nonstationary
models. We examine tests of the random walk versus deterministic time trend
model. Section 5 explores the effect of spurious detrending on time series
regression and Section 6 applies the theory to study the impact of spurious
detrending on excess volatility tests. Section 7 provides a summary and some
conclusions. A technical appendix contains explicit formulae for the limiting
distribution theory discussed in the text of the paper.

2. TIME TRENDS AND INTEGRATED PROCESSES: REGRESSION PROPERTIES

We initially concern ourselves with analysis of the least squares regression:
(1) y=a+pt+é, (t=1,....T),
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where y, is assumed to follow a deterministic trend about white noise, rendering
(1) a correctly specified model, when in fact the true generating mechanism for

{)} 1s:
(2) Ye=Vi—1tu,.

In order to derive the behavior of (1), we need to place some restrictions on the
u, process in (2). We require only that the partial sum process S, = Y!iu
constructed from u, satisfies a functional CLT of the type dlscussed and applled
in Phillips (1987a). Thus if r€[0,1] and we define X,(r)=T"'/%S ., then we
require

(3) X;(r)=B(r), as T- 0.

Here, the symbol “ = ” signifies weak convergence of the associated probability
measures and B(r) denotes Brownian motion with variance given by

o?=lim,_ T 'E(S?).

Functional CLT’s such as (3) are known to apply for a rather general class of
innovation sequences u,, which allow for weak dependence and some heterogene-
ity over time. The reader is referred to Phillips (1987a) for discussion, references,
and a range of applications.

When o2 =1 we call the process B(r) standard Brownian motion and we use
the notation W(r). Thus, in general we may write B(r)=oW(r) where the
symbol “ = ” signifies equality in distribution. Frequently it is convenient to write
these and other stochastic processes on [0, 1] without the argument as simply B
and W.

Using the methods in Phillips (1986, 1987a) it is now easy to find the relevant
asymptotic theory for the regression (1).

THEOREM 2.1:
(a) T ' =4f}B—6[lrB=N(0,2062/15),
(b) TV =12[[rB - (1/2) [{B] = N(0,602/5).

Thus, the estimated time trend coefficient in (1) is consistent and converges to
the (true) structural coefficient of zero. However, the constant term & in the
regression is not consistent and its distribution actually diverges as T 1 co. Here
we have an example where the nonstationarity of the true process affects the large
sample properties of the regression coefficients differently. This result may be
usefully related to the recent spurious regression theory developed in Phillips

(1986). In this case we have the regression
(4)  y=a+Bx +g,

where x, and y, are independent random walks or integrated processes such as
(2). However, as shown in Phillips’ paper and in contrast to (1) above, the
constant & in (4) has a divergent asymptotic distribution, whereas the coefficient
g in (4) possesses a nondegenerate limiting distribution.
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Both sets of results emphasize the importance of orders of magnitude of
sampling variability in determining coefficient consistency. For the variable y,,
the sample moment T~'E]_,y? is O,(T). For the 1ntercept the correspondlng
moment is O(1). For the time trend, the moment T~ I¥7_t%is O(T?). When the
regressor sample variance is of the same order of magnitude as that of the
dependent variable, the limiting distribution is usually nondivergent. When
the regressor sample variance is of a higher order of magnitude than that of the
dependent variable, the regression coefficient usually has a degenerate limiting
distribution, despite the nonstationarity of the regressand and the misspecifica-
tion of the equation. In the latter case, the higher order of magnitude provides
leverage in discriminating between the time paths of regressor and regressand.
This discriminatory power is clearly seen in the case of the time trend in equation
(1). For an integrated y, the sample variability of y, is O,(T'). For the regressor ¢,
the sample variability is O(T?). The probability that a sample path for y,
achieves the same order of magnitude of sample variability approaches zero as
T — oo.

The consistency of B does not translate into desirable properties for conven-
tional significance tests that 8 =0 in (2). Our next theorem characterizes the
asymptotic behavior of the main regression diagnostics for (1). We use F,_, to
denote the regression F statistic for testing the hypothesis y =0, DW to denote
the Durbin-Watson statistic, and R? to denote the coefficient of determination.
We say that a statistic diverges when it is asymptotically unbounded with
probability one.

THEOREM 2.2: For the regression equation (1) under the generating mechanism
(2) as T 1 o0: (a) Fp_, diverges; (b) F,_, diverges; (c) DW—p—) 0; (d) R? has a
nondegenerate limiting distribution.

Explicit distributional results for (a)—(d) in Theorem 2.2 are provided in the
Appendix. The particularly interesting results, for hypothesis testing, are (a) and
(b). The distributions of both traditional F tests diverge. The divergence of the
test that a = 0 is not surprising since the coefficient estimate a does not possess
an asymptotic distribution. The divergence of F;_ is more surprising. Here we
have a case where a regression coefficient converges to zero, yet the standard
statistical test that the coefficient equals zero diverges to infinity. This latter result
mirrors the asymptotic behavior of the F statistic for B in the spurious regression
model (4). In this case Phillips (1986) shows that ,B also possesses a divergent F
statistic despite the fact that ﬁ itself has a nondegenerate limiting distribution.

Our results for the F;_, test corroborate the Monte Carlo findings of Nelson
and Kang (1981, 1983). Nelson and Kang provided evidence that finite sample F
tests of the significance of the time trend are severely biased. Theorem 2.2
indicates why this bias occurs and shows that it is exacerbated as the number of
observations increases.

The results for the Durbin-Watson statistic appear quite promising for the
empirical worker. This diagnostic will, with probability one, reject the hypothesis
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of correct model specification, as T — oo. The fact that ,é - 0 in (1) ensures

that the estimated regression residuals will evidence greater temporal dependence
as T — 0. The dangers of incorrectly identifying an integrated process as a trend
stationary process are naturally diminished to the extent that standard regression
diagnostics will detect the specification error. The asymptotic behavior of the
Durbin-Watson statistic suggests that the probability of mistaking a nonsta-
tionary series for a stationary series about trend is not particularly great for
reasonably large data sets. These results strongly reinforce the recommendations
made recently by Sargan and Bhargava (1983) concerning the use of the Durbin-
Watson statistic as a discriminatory device for unit roots. However, even though
global misspecification generates a low Durbin-Watson, a low Durbin-Watson
does not necessarily imply that y, is integrated.

Finally, the R? statistic converges weakly to a nondegenerate random variable
in the limit as T 1 co. The Monte Carlo simulations of Nelson and Kang indicate
that the expected value of this random variable is approximately .44.

We may therefore conclude that conventional hypothesis tests will generate an
apparently statistically significant relationship between time and a zero mean,
integrated dependent variable. The Durbin-Watson statistic, on the other hand,
will provide an asymptotically powerful method of exposing the spurious regres-
sion. The results of this section strongly support the importance of combining
hypothesis testing with specification analysis. A significant time trend may be the
result of global misspecification as well as the presence of a “structural” trend.

The asymptotic results for this section hold for a wide class of error processes.
The functional CLT approach that we employ permits a great diversity of
potential innovation sequences, in contrast to Monte Carlo studies which have
relied upon iid normal errors in the simulations. Our results and the analytic
formulae given in the Appendix, therefore, provide a substantial generalization of
this literature.

Analogously, the asymptotics verify that Monte Carlo results obtained for the
iid normal case may be expected to hold in a much more general setting. The
robustness of the Monte Carlo results may then be seen as a manifestation of the
invariance principle (3) that underlies our theory and which obtains for a wide
class of different innovation sequences.

3. RANDOM WALKS WITH DRIFT

Time series such as GNP clearly are not random walks about a zero mean. It is
therefore important to consider data generating processes other than (2) which
allow for some secular drift over time. We shall consider as an alternative to
equation (2) an /(1) process with drift:

(5) yo=pty ., tu.

The regression theory for this data generating process is identical to that of
Section 2. In fact, we have the following theorem.
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THEOREM 3.1: If (5) constitutes the true data generating process, then for the
least squares regression (1) we have:

(a) T"'%a= N[0,20%/15];

(b) TV*(B - p) = N[0,60%/5], exactly as in the zero drift case;

(¢) the asymptotic properties of Fz_,, F,_o, DW, and R* are identical to the
zero drift case.

The intuition behind these results is straightforward. An I(1) process with drift
may be converted to a series with a time trend in the sense that

(6) V=Rt y o tu=pityk
where y* is a trendless random walk. Regressing this sum against a time trend

will generate results identical to those of Section 2 except for the ur term which is
now captured by the trend coefficient in the regression.

4. REGRESSION DIAGNOSTICS

In this section, we discuss regression diagnostics which will permit discrimina-
tion between stationary and nonstationary time series models. A classical F test
to discriminate between models (1) and (2) would analyze a hybrid regression of
the form:

(7) y=a+Br+yy_,+u,.

Model specification may be tested directly via F tests applied to the various
regression coefficients. Acceptance of the hypothesis that §=0, y=1 corre-
sponds to acceptance of the /(1) process model and the presence of a unit root in
the generating mechanism of y,. Conversely, acceptance of the hypothesis that
y = 0 corresponds to a complete rejection of the random walk model. Note that
the hypothesis y =0 is a polar case to the alternatives of an integrated process.
Frequently we will be concerned with alternatives that include stationary autore-
gressive coefficients y with |y| < 1. Tests of y =1 and joint tests of 8=0,y=1in
(7) have been studied recently at the present level of generality by Phillips and
Perron (1988). This paper provides extensions to models with trend and drift of
the test procedures developed in Phillips (1987a) for detecting the presence of a
unit root in models with general time series innovations. In particular, Phillips
and Perron provide modifications to the conventional test statistics which
eliminate nuisance parameter dependencies through a nonparametric serial corre-
lation correction. Since these procedures are explored in detail in the papers cited
they will not be pursued further here.

Instead, our attention will focus on some additional regression diagnostics
associated with the misspecified equation (1). The misspecification generated by
treating equation (1) as the correct model is subject to detection by the empirical
researcher in several ways. For example, specification tests in the Hausman class
provide potential test statistics when the transformation of equation (1) generates
a stationary regression.

Specifically, we first consider the differencing test discussed by Plosser, Schwert,
and White (1982) to examine whether equation (1) is correctly specified. We are



TRENDS VERSUS RANDOM WALKS 1339

interested in how the test performs when equation (2) is the true specification and
when the model estimated by (1) is assumed to be correct. The differencing test
consists of examining the regression

(8) Ay =¢+17,,

where, under the null, n, is a difference of white noise, and computing the test
statistic:

9)  (B-eé)(var(e) - var(B)) (B-2),

where f and ¢ are the regression coefficients from equations (1) and (8), and
Var(¢) and Var( [? ) represent the estimated variances of the regression coeffi-
cients under the assumption that (1) is the true model. When (2) is the true
model, consistency of (9) as a test statistic requires that (9) diverge asymptoti-
cally.

To understand the properties of (9) note that under the erroneous assumption
that (1) is the correct model, the econometrician would employ the formulae
Var(¢) = 2T 22 and Var(B8) = (Z7_,(t —1)*)"'s?, where s? is the estimate of
the error variance. Suppose further, that the estimate s> is obtained from
regression (1). The test statistic (9) can be rewritten

-1
T

(T2(f-2))|2- Tz( )} (z—i)z)l

t=1

T s?
When (2) is the true model, our previous results indicate that the statistic will
possess a nondegenerate asymptotic distribution. Thus, the statistic is not
asymptotically divergent and the differencing test is inconsistent.

On the other hand, the Durbin-Watson statistic provides a promising second
diagnostic against misspecification. Recent work by Engle and Granger (1987)
and Phillips and Ouliaris (1986) on cointegration has provided evidence that the
Durbin-Watson statistic can be a powerful diagnostic against nonstationarity.
Section 2 verified that the Durbin-Watson statistic will converge to zero at the
rate T !. Large data sets should therefore generate very low Durbin-Watson
statistics when nonstationarity is present and ignored, in time series regressions.
However, low Durbin-Watson statistics traditionally signal the implementation
of rather standardized corrective procedures and these do not always lead to
more appropriate specifications. We conclude this section, therefore, with an
example of how mechanical corrections for autocorrelation can still leave diffi-
culties in inference.

The convergence of the Durbin-Watson statistic to zero does not imply that
two stage generalized least squares (GLS) procedures will produce a correction
that directly eliminates nonstationarity. In particular, these procedures will not
lead asymptotically to the same coefficient estimates and tests as direct differenc-
ing of the data to eliminate nonstationarity. For example, suppose that (1) is
estimated with an autoregressive correction using the first order serial correlation
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coefficient p, of the residuals from the OLS regression (1). GLS applied to (1) is
not asymptotically equivalent to direct estimation of (8).

To see that the GLS estimates of 8 fail to converge to the estimate of 8 from
the differenced equation (8) consider the sequence of GLS estimators:

(t_i_ﬁT(’_ 1 _ﬁ))()’z_y_ﬁr()’hl _y—l))

(10) BT= =2

This GLS estimator is the usual Cochrane-Orcutt estimator. We shall assume that
the estimates for p, are constructed as py=1— SDW,, where DW, is the
estimated Durbin-Watson statistic based upon the OLS residuals from (1).
Finally, notice that the estimate of 8, may be rewritten as

=2

T
(11) ﬁr=[ZAy,+$r

;(t—l—i)Ayn“ X (-7

t=2

+£T§: (Y —y)—1- E)H

(T_ 1) +$T

T T
22(:—1—i)+572(z—1—i)2H

t=2
-1
+0,(T)

where £,=1— ;. Note that £, is O,(T ') since the Durbin-Watson statistic is
O,(T™M).

The differenced equation estimate of the time trend coefficient is, of course,
equal to X7_,Ay,/(T—1). The relationship between (11) and the differenced
regression coefficient in (8) will therefore depend upon the terms involving £;.
Note that the term X]_,A4 y, is O,(T'/?). However, the term ©7_,(t — 1 —7)Ay, is
O,(T¥?), Z]_y(y-y =Nt =1 =1)is O,(T*?), and the term &, is O,(T™"). As
a result, the numerator is not asymptotically dominated by the leading term. The
first, second, and fourth terms will contribute asymptotically in this expression.
Similar reasoning indicates that first and third terms in the denominator will both
contribute to the asymptotic distribution of the estimator. As a result, the two
stage GLS procedure fails to converge to the differenced regression.

Similar reasoning implies that the F statistic from the GLS regression will also
fail to possess a limiting x? distribution. In particular, we have the following
theorem.

THEOREM 4.1: Estimation of equation (1) by a two stage GLS procedure,
employing a Cochrane-Orcutt correction for first order autocorrelation with the
estimate pr=1— DW;, will yield coefficient estimates Bg; s and Qg such that
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(a) T"?Bs.s converges weakly to a nonnormal random variable; (b) T'/*ag,
converges weakly to a nonnormal random variable; (c) Fy_, converges weakly to a
non-xi random variable; (d) DW—p» 0. Explicit characterizations of the limiting

distributions are given in the Appendix.

The failure of the GLS procedure to converge in distribution to a differenced
regression has important ramifications for the applied worker. For the case of
stationary errors, Amemiya (1973) has verified that across a large class of models,
coefficient estimates derived from a GLS procedure with an estimated covariance
matrix possess the same asymptotic distribution as coefficient estimates generated
from the same GLS procedure where the covariance matrix is known. For
nonstationary, nonergodic errors, this equivalence does not hold.

Further, the GLS regression coefficients and test statistics will, in the case of a
misspecified integrated time series, diverge from the conventional asymptotics.
The limiting distribution is not x? under the null. Thus, proposals to automati-
cally prewhiten data in order to vitiate the impact of error autocorrelation on the
nominal asymptotic size of standard test statistics will fail to generate the desired
x? criteria in the nonstationary case. The GLS procedure will produce a test
statistic with a well defined limiting distribution. However, if the GLS test
statistic is erroneously treated as x?, the nominal and actual asymptotic test sizes
will remain unequal. Phillips and Durlauf (1986) discuss some new methods for
transforming test statistics with unconventional limit distributions into x> form.

The failure of the GLS procedure to generate x? asymptotics reinforces the
importance of the Granger and Newbold (1974) discussion of spurious regres-
sions. Even if standard regression diagnostics are employed to detect departures
of the regression errors from white noise, spurious inference is still a danger. The
diagnosis of misspecification via the Durbin-Watson statistic does not automati-
cally lead to a correct asymptotic nominal size for a mechanical GLS based test.
Thus, the failure to model nonstationarity will not be corrected by automatic
GLS correction procedures.

5. HYPOTHESIS TESTING WITH DETRENDED DATA

The presence of integrated processes in time series data poses problems to the
empirical worker due to the impact of nonstationarity on statistical inference.
Regression with integrated processes generates nonnormal coefficient estimates
and non-x? test statistics. The failure to account for these deviations from
standard theory will lead to improper inferences. The Granger-Newbold work on
spurious regressions provided some simulation evidence that the regression of
one integrated process on another independent integrated process leads to
conventional coefficient tests that are seriously biased towards the rejection of the
hypothesis of independence.

Further work on the problem of nonstationary regressors has generated evi-
dence that the inappropriate detrending of integrated series will exacerbate the
phenomenon of spurious regression. Monte Carlo evidence on this problem has
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been accumulated in a series of papers by Mankiw and Shapiro (1985, 1986).
Further simulation evidence may be found in Nelson and Kang (1981, 1983). Our
approach in this paper helps to provide an explicit asymptotic answer to the issue
of the impact of detrending on spurious regressions. We have the following
theorem.

THEOREM 5.1: Let x, and y, be generated as independent 1(1) processes
(12) yt= y—1_}_1'417

-
(13) x1=xt—1+7’1'

The coefficients in the least squares regression

(14)  y=a+Br+9x,+12,

have the following asymptotic behavior: (a) ¥ converges weakly to a nondegenerate
random variable; (b) ,é—p» 0; (¢) & diverges; (d) s* diverges; (e) F,_, diverges;
(f) DW — 0. Explicit characterizations of the limiting distributions for standard-
ized versions of (a)—(f) are given in the Appendix.

In (14) the time trend is the only consistently estimated regression coefficient.
The coeflicient ¥ relating the two time series possesses a nondegenerate limiting
distribution. This mirrors the earlier asymptotic results obtained in Phillips
(1986) for the original Granger-Newbold spurious regressions model.

The impact of detrending on the asymptotic distributions may be seen by
considering the asymptotic distribution of ¥ when the time trend is omitted. The
asymptotic behavior of ¥ in the latter case is derived in Phillips (1986). Both
formulae are given in the Appendix (see (A9) and (A15)) and they may be seen to
differ by the presence of terms which express the interaction between the time
trend and the nonstationary series. Thus the Monte Carlo results of Dickey-Fuller
(1979, 1981), Mankiw-Shapiro (1985, 1986), and Nelson-Kang (1981, 1983) are
corroborated by analytical evidence and are generalized to a much wider class of
processes. Note that the time trend affects the asymptotic behavior of ¥ in (14)
despite the fact that £ converges to zero.

The F test, as indicated in (e), diverges as in the nondetrended case. The
suitably normalized asymptotic distribution of the F test (see (Al13) in the
Appendix) is affected by the presence of the time trend, but the qualitative result
is not. Regardless of the inclusion of the time trend, the F test will diverge. Any
suggestion that (in the nonstationary model) the time trend biases hypothesis
testing is, thus, at best a small sample result. The nonstationarity of the
underlying series is the critical issue, rather than inappropriate detrending.

An important and useful diagnostic in the detrended spurious regressions
model is again the Durbin-Watson statistic, which from (f) we see converges in
probability to zero. Thus, the Durbin-Watson continues to deliver sharp evidence
of underlying nonstationarity in large samples even in detrended regressions. The
inappropriateness of the conventional F test should thus become apparent to
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the investigator from the inspection of residual DW diagnostics. Once again the
results indicate that the employment of conventional significance tests must be
suspect until the stationarity of the dependent variable is resolved.

We conclude this section by considering the impact of detrending when the
regressand is a stationary series. Suppose y, follows the process

(15) Y =,

where u, is independent of n,. The estimation of (14) will generate consistent
estimates a, B, and 9. Further, these coefficients will all converge to zero.
Spurious correlation will still occur, however, in the sense that the asymptotic
distribution of the F,_, test will not converge to a x} distribution. The nominal
test size is exceeded by the actual test size. In addition, the presence of the time
trend in the regression will affect the asymptotic distributions of the various
coefficients. These results are formalized in the next Theorem.

THEOREM 5.2: Let y, be generated by (15) and x, be generated by (13). Define
z/ = (u,,m,) and the vector partial sum S,=¥{z,. Suppose the elements of S, satisfy
the invariance principle (A21). Then (a) T{ converges to a nonnormal random
variable; (b) T3/ 2[? converges to a nonnormal random variable; (c) T'/2& converges
to a nonnormal random variable; (d) F,_ converges to a non-x3 random variable.
Again, explicit characterizations of the limiting distributions are provided in the
Appendix.

It is easy to see from the explicit formulae given in the Appendix (see (A16)
and (A17)) that the presence of a time trend in (14) does affect the asymptotic
distribution of the regression coefficients. However, just as in the Granger-
Newbold case, the inclusion of the time trend has only a qualitative effect on the
asymptotic distributions. The convergence rates for the coefficients are unaffected
(see (A16) and (A20) in the Appendix).

The impact to detrending on the asymptotic properties of regressions such as
(14) is particularly significant when the regressor is an integrated process with
drift. Suppose that x, is generated by

(16) xt=p’+xl—1+nt=nu‘t+x1*? ‘uqﬁo,
where x* is a driftless random walk. Consider the OLS regression
(17) y,=a+9x,+14,

where y, is generated by (15). The standardized regression coefficient ¥ and
associated test statistics now follow the standard asymptotic theory. In fact, it is
easy to see that

T34 = N(0,126%/p?).

The asymptotic behavior of ¥ is therefore equivalent to the asymptotic behavior
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of ¥ in the OLS regression
(18) yr:&—"?(.“‘t)—"ar‘

The time trend component of x, in (16) is O(¢), a higher order of magnitude than
the driftless /(1) component which is Op(ﬁ )- It therefore dominates the asymp-
totics, rendering them conventional in this scalar case.

On the other hand, if we estimate (14) rather than (17), then the asymptotics
associated with ¥ will replicate the results of Theorem 5.2, as the arguments in
Section 3 indicate. Removing the time trend from x, naturally renders the x*
component asymptotically significant. The standard asymptotics will no longer
apply. Suitably normalized moments of x* converge to random variables rather
than constants, unlike the original x, series.

We therefore conclude that spurious detrending does affect the asymptotic
behavior of regressions with integrated regressors. However, this impact is
secondary to the statistical properties of the time series being analyzed. Spurious
detrending may exacerbate, but is not the source of unconventional asymptotics,
when the regressors possess zero drift. If the underlying regressors possess
nonzero drift, then detrending may, in fact, induce departures from conventional
asymptotics as we have seen in the final example above.

6. SPURIOUS DETRENDING IN EXCESS VOLATILITY ANALYSIS

In this section, we extend the analysis of spurious detrending in regressions to
spurious detrending in excess volatility testing. Specifically, we examine the
statistical properties of excess volatility tests when the underlying time series are
integrated processes, possibly with drift, rather than ergodic processes with
deterministic trends.

Excess volatility tests represent a method developed by Shiller (1979, 1981a,
1981b) to analyze the rationality of asset market prices and returns. Consider a
sequence of forecasts { P,} and a sequence of realizations { P,*} such that each
element of P, represents a prediction of the corresponding element of P,*. The
difference u,= P* — P, will therefore equal a set of observations of forecast
errors. If these forecast errors are generated by “rational” forecasts, then they
must be orthogonal to information available at the time the forecasts are made.
Since the forecasts themselves are part of this information set, this implies that

(19) Var(P*) = Var(P,) + Var(u,)
or
(20) Var(P*) — Var(P,) > 0.

Equation (20) represents a testable restriction on the time series. Shiller (1981a)
applied (20) to an examination of the relation between stock prices and
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dividends. In particular, he has examined whether stock prices are equal to the
expected present discounted value of future dividends, i.e.

(21) HO: Pr= ZsiEt(Dt+i)
i=0

where P, is stock price, 8 is discount rate, and D,,, is dividend payment at  +i.
The realizations P* are constructed by replacing the expected values of
dividends with their historical realizations. Shiller assumed that in both cases, P,
and P* were ergodic with deterministic trends. He thus detrended the series and
calculated the sample variances finding dramatic violations of the inequality
bound (20).

A number of objections have been raised to the asymptotic properties of excess
volatility tests. A number of authors, most notably Marsh and Merton (1983) and
Kleidon (1986), have argued that the stationarity assumption is false, as the short
rate and dividend series are integrated processes. In particular, Kleidon (1986)
has provided Monte Carlo evidence that when the forecast series is an integrated
or near integrated process, then the calculation of variance inequality statistics
such as (20) will lead to a large number of negative realizations and hence
rejections of the null hypothesis even when the null hypothesis is true.> Kleidon
further contends that the failure of the sample variances to converge in probabil-
ity to constants when P, and P,* are integrated asymptotically invalidates the use
of variance bounds tests altogether. In addition, Kleidon has found results
similar to Mankiw and Shapiro (1986) suggesting that the detrending of forecast
series and ex post rational series exacerbates the rate of rejection of the Shiller
excess volatility test under the null hypothesis.

Marsh and Merton (1983) have brought the critique of the excess volatility
tests in the case of stock prices a step further. These authors argue first that the
dividend process is not exogenous but rather a choice variable determined by
stock prices. They then demonstrate that if the stock price series is integrated, the
inequality (20) is reversed for all data realizations, when stock prices Granger
cause dividends. Within this framework, the Shiller inequality violations con-
stitute confirmation of the efficient market hypothesis.

The Monte Carlo and analytical results cited in these studies may be given a
precise formulation by employing the asymptotic techniques of Section 5. We
shall therefore consider the asymptotic properties of excess volatility tests when
the forecast series P, obeys

(22) Pt=P1—1+T’1'

Further, we assume that u, and 7, possess the statistical properties needed for
Theorem 5.2. In particular, we assume that the process (u,,7,) has partial sums
which satisfy the multivariate functional CLT of Phillips and Durlauf (1986).

2 Test bias refers to the discrepancy between actual and nominal asymptotic test size. For excess
volatility tests which accept or reject based upon the nonnegativity of a sample variance difference,
the nominal test size is zero.
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Finally, let P, P}, and u, denote that detrended series corresponding to P,
P*, and u, respectively.

In order to calculate the asymptotic properties of (20) we calculate the sample
moment differential

T T
(23) V01=T_IZ(P(IT_F<I*)2_T71Z(Pdt~ﬁd)2

=1 =1

T T
=T'% (ud,—ﬁd)2+2T‘1 )y (Pd:_Pd)(“m_ﬁd)~

=1 =1

This expression will be greater than zero iff

T
Z(Pdt_Pd)(udr_ad) 1
(24)  Vol'= =— > - =,

Z (uy— ad)z

t=1

The expression (24) is nothing more, however, than the regression coefficient ¥
in

(25) P =&+ Br+qu+¢,

Thus, we see that an excess volatility test is equivalent to an examination of the
value of a regression coefficient when forecasts are regressed against a constant,
time trend, and forecast errors. This result permits an easy linkage of the Monte
Carlo results in Flavin (1983) and Kleidon (1986) to the asymptotic theory
presented in Section 5.

Theorem 6.1: The Shiller excess volatility test statistic Vol will possess non-
negligible asymptotic size when the forecast series is an integrated process. The
limiting distribution of Vol is nondegenerate and is explicitly characterized by
(A22) in the Appendix.

The excess volatility test possesses nonnegligible asymptotic size because of the
inconsistency of the regression coefficient ¥ in (25). As a result, the sample
variance differential fails to converge to a constant greater than zero, as would
occur in the standard, ergodic case. The fact that the excess volatility test statistic
converges to a random variable implies that there is no guarantee that the test
will possess zero asymptotic size under the null, even though we are testing
against a nonlocal alternative and are employing a zero-one decision rule based
upon the value of the statistic. In the ergodic case, ¥ converges to zero under the
null; thus we accept the hypothesis with asymptotic probability 1 since we are
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examining whether § is greater than — §. The Kleidon and Flavin results thus
detect the failure of the variance dlﬁ“erentlal to fulfill the requirements of the
strong law of large numbers. The limiting distribution of the Vol statistic
possesses nonzero mass for values less than — %.

The asymptotic results do suggest that two arguments in the empirical litera-
ture on excess volatility testing are not correct. First, there is Kleidon’s assertion
that with an integrated forecast series, excess volatility tests are not interpretable.
Kleidon assumed that the failure of the sample variances of P, and P* to
converge implies that the differential failed to possess a limiting distribution. As
the theorem indicates, this conjecture is false. The Var( P,) component of the two
sample variances cancels out in the calculation of the Vol statistic, which
generates a well defined limiting distribution for the statistic. One could therefore
perform an asymptotically valid excess volatility test by comparing the realiza-
tion of Vol’ to the critical value of its limiting distribution.

Second, the oral tradition that has become associated with Marsh and Merton’s
work on excess volatility testing, that nonergodicity of the forecast series some-
how reverses the Shiller inequality, is also incorrect. There is no guarantee under
the null that the Vol’ test statistic is always less than — 3. The Marsh and Merton
results stem from a reversal of the causality between dividends and stock prices,
rather than from nonergodicity per se. The Shiller inequality is reversed only
when stock prices drive dividends.

Finally, we conclude with an interpretation of a violation of the excess
volatility bound when the forecast series is integrated. Consider the ratio
Var(P;¥)/Var(P,,). The excess volatility bound requires that this ratio be greater
than 1. This ratio is linked to the regression

(26) Pr=a+vyP,+¢,

in that Var(P}¥)/Var(P,) > 1 is equivalent to
T T _
§-1>-3% (udt—ad)z/z > (Pdr_Pa')
r=1 =1

where 9 is the OLS coefficient. When the forecast series is integrated and y =1,
the right hand side of this inequality converges to zero. Thus, a test of the
variance inequality bound for integrated processes is a test of whether P} and
P,, are cointegrated with cointegration vector (1, —1). Again, a consideration of
this ratio without confidence bounds will lead to poor size properties for the test,
since ¥ is skewed to the left, as verified by Stock (1987). However, direct tests of
cointegration in this case, using the methods of Phillips and Ouliaris (1986), are
now available.

7. SUMMARY AND CONCLUSIONS

This paper develops a framework for understanding the behavior of integrated
time series which are misspecified as trend stationary time series. We have
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provided an asymptotic theory for the behavior of regression coefficients in
models which attempt to estimate time trends when the dependent variables are
actually I(1) processes. In addition, the asymptotic properties of test statistics
associated with the misspecified regression have been explored. In particular, the
F' statistic examining the significance of the time trend coefficient will diverge
when the dependent variable is a zero drift random walk. This divergence occurs
in spite of the fact that the coefficient estimate converges in probability to zero.

Formal asymptotic results have also been developed for testing whether a time
series is an integrated process or a stationary process about a deterministic trend.
This includes classical F and Hausman type procedures. These test statistics
possess the feature that they do not possess limiting x? distributions when the
data generating process is nonstationary. This implies that when the null hy-
pothesis is that the series is integrated, excess rejection will normally occur if the
limiting distribution is incorrectly treated as x>.

Further, we have investigated a number of issues concerning statistical in-
ference with spuriously detrended data. We have investigated the behavior of
spurious regressions among inappropriately detrended, nonstationary series. The
detrending of the series does affect the limiting distributions of the regression
coefficients. Test statistics are also affected. However, the impact of detrending
on hypothesis testing is a second order effect. The nonstationarity of the series
ensures that F statistics will erroneously indicate a statistical relationship with or
without detrending.

Our analysis next provided some univariate results on the impact of detrending
on regression analysis with cointegrated time series. Our results confirm Monte
Carlo findings which indicate that the detrending of cointegrated series has an
important effect on the asymptotic properties of the regression coefficient esti-
mates and associated test statistics. In particular, detrending can increase hy-
pothesis test bias.

Finally, we have provided a set of asymptotic results for excess volatility tests
with detrended integrated series. We demonstrate that excess volatility tests with
integrated processes possess nonnegligible asymptotic size. In addition, our
formulae provide a framework for conducting excess volatility tests with in-
tegrated processes.

Our results constitute an extension of the ongoing literature in three senses.
First, a number of issues, such as the asymptotic behavior of the differencing test
for model specification, do not appear to have been addressed previously.
Second, our results provide an analytic asymptotic theory whereas previous work
on the issues we have addressed has been based upon Monte Carlo studies.
Third, our results are robust with respect to a large variety of error processes. The
underlying errors need not be normal, nor independent, nor identically distrib-
uted.

The Durbin-Watson statistic has been shown to possess promising asymptotic
properties as a regression diagnostic in this context. This confirms earlier work by
Engle-Granger and Sargan-Bhargava on related topics. The Durbin-Watson
statistic converges to zero when an integrated process is erroneously treated as
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stationary. The unconventional asymptotics for the test statistics considered in
this paper underline the importance of correctly identifying the behavior of error
processes prior to engaging in significance testing.

Potentially valuable extensions include the generalization of the results of this
paper on regression asymptotics and diagnostics to more complicated systems of
equations with integrated regressors. General methods for dealing with multiple
systems of equations with integrated regressors have been developed by Phillips
and Durlauf (1986), and these may be generalized to the case of detrended and
spuriously detrended series.
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APPENDIX
ExpLICIT FORMULAE FOR THE LIMITING DISTRIBUTION THEORY

In this Appendix we provide explicit characterizations of the limiting distributions of the various
‘estimators and test statistics considered in the text. Most of these involve simple functionals of
Brownian motion. They are obtained using the approach explored in detail in Phillips (1986a, 1987a)
and Phillips and Durlauf (1986) which makes use of functional CLT’s such as (3) and the continuous
mapping theorem. In some cases, particularly Theorem 6.1, the derivations require a theory of weak
convergence to stochastic integrals with respect to Brownian motion. In such cases the results draw on
the relevant theory given in Phillips (1987a) (in the scalar case) and Phillips (1987c) (in the matrix
case). Since the derivations in all cases are relatively straightforward we state only the final results
here. Details are given in an earlier version of this paper (Durlauf and Phillips (1986)) and Durlauf
(1986) which can be obtained from the authors on request. The results below are stated with reference
to the respective theorems in the text.

1. Formulae for Theorem 2.2:

lz[jg)lzw(z)dtf %j(')l W(r)a!t]2

(A1) T E_,=

fO‘W(r)zdt— [fol W(t)dt]z— 12[[01zW(z)dz— %folwo)dz]z ’

[2'[01 W(t)d: - 3](’)1tW(t)dt]2

(A T E,= ,

j:w(t)zdtf [/O‘ w(;)m]2 - 12[[0%;4/(;)(1;7 %fol W(t)a't]

2

2
9,

"2[/: w(t) - [j;:W(t)dt]zf lz[thW(t)dtf %'/(;1W(t)dt”2 ‘

(A3) TDW =
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where
.
o2 =limy_ 771 Y E(u}),
=1
T 2
02=limTawT1E(Zu,) ;
=1
1 2 1 2
A4 R*=1- w(t dt—[ Wtdt]
(A4) Hfo (| ["w(n)

_12[f01tw(t)dt— %fol W(t)dtr]
N [fol W(t)2dt - [/01 W(t)dtr”.

2. Formulae for Theorem 4.1: Set T¢=T(1 — p)=(T/2)DW. Then
(AS) T¢r = ol

- [202[/01 W(r) dt - [/OIW(t)dtr
712[1(’)11W(t)d17 %fol W(t)dt]ZH

=§, say;
oW(1)+[?—EV—ZQ—af W(t)dt+§o[f tW(t)dt——f W(t)dt”
(A6) Tl/zﬁGLS= 1+£/12
(A7) TV g 5= oW(1) ~ o [ W(1)di
0

- [{ow(l) +g['—’@ ﬂ;fol w(t)dt

+$0[/;)1[W(t)d[— _;-_/()lw(t)dt:l]}(1+£/2)] +1+€2/12;

[ow(1)+g[ ow( _ fw(t)dt+£a[f tW(r)dt——f W(t)dt]”

A8 Fro= 2(1+£/12)

3. Formulae for Theorem 5.1:

(A9) $= [—ayow [/IV(t)W(t)dtf /OIV(t)dthlW(t)dt]
—0,0y [/ltW(t)dtf lfIW(t)a[t] [fltV(t)dt— lflV(t)a't”
I:%aw [/ W) di - [f W(t)dt] ]—aw[ tW(t)dtf—/ W(z)dzH

={, say;
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(Al10) TVf= [oﬁ.[fol W) [fOlW(t)dt]Z]
x [ay[fo‘zv(t)dt— %fol V(t)dt”
“ovaiy| [Vwa- [V winal
{fwonm-3gvon]
- [I—Z[f wo'a- [ w<r>dz]2 - oar[/oltwo)dt— o W(,)d,r”

={,, say:
(All) T 1/2&=0V/ V(t)dtf§2/275”10,,,](.)1W(1)dt:

2
(A12) T"lsz=ogf'V(z)zdr—oa[f1V(r)dr +8,/12
0 0

+§3[a,24f0‘ W(t) de - ofy[[o‘ W(t)dzﬂ
_2§l[ayaw[fol V()yW(t)dr— /01 V([)dlj(’)l W(r)dt”
_2§20V[[011V(z)d1— %fol V(t)a’t]

1
+z§1§20w[f0‘1w@)dz - Efol W(z)dr]

=w?, say;

& fwora-[pron] ]l gmou- L pwod]]

Al3 T 'F_
( ) =0= W /12

y

(A14)  TDW= (o} +{l02) /u’.

In (A9)-(A14) V(t) and W(t) are independent standard Brownian motions and

5

ro\2
o= limTA_,CT"lE( Y u,) ,

(=

5

r 2
o =lim,_, ( Zn,)
T

1=

o) =limy_ T 121:( )

=1

T
=lim, 7' Y E(

t=1

|8}

2
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When the time trend is omitted from the regression (14) we obtain, in place of (A9),
1 1 1

g, V(YW (t)dr— | V(t)dr| W(t)dr

l[fo<><> fo()/om]

aw[fol W(t) di - [[)l W(z)dz]z]

a formula earlier derived in Phillips (1986).

(Al15) 9=

4. Formulae for Theorem 5.2:

(Al6) T?=“ 5 fW(r)dV(z) W(t)dt]

-0, ow[/oltw(t)drf %[O‘ wmm”/ V(t)di - ﬂ”
[ B [f W(t)dr - [f W(z)dz] ] 7oﬁv[j:)lrW(t)d!7 %/01 W(z)dt]z]

=3, say;
(A17) T3/%f = [oﬁ,[/ol W(t) dr - [j(’)l W(z)d,}z] 01'[‘[( Vi(t)di - ﬂ]

_gw[foltW(t)a't— %j(.)l W(t)dt]a,,rowlj(;l W(t)dv(t) - l/(l)’[(’)l W(t)dt”

- [‘;—”[fo‘ W(r) di— [fu‘ W(,)dzH —oﬁv['{;ltW(t)dt— %[O‘W(z)dzH

={,. say:

(A18)  T'a=oa,1(1) 7§4/27§30wf0‘ W(r)dr,

§§[Z—‘z’[f01wu)zdt— [fO‘ W(z)dzﬂ - o&,{fO‘rW(t)dl* %fol W(t)dr]_]
v ,

Al9 0=
( ) y=0 0143/12

R

where V'(1) = V(1) — V(t) and the remammg notation is as defined above in paragraph 3. When the
time trend is omitted from (14) we obtain, in place of (A16),

-1

(A20)  T5= [oﬁ,[/(;lw(t)zdr— [f()‘W(z)m]z”

X0,0, [/0‘ W(t)dv(r) - V(1)[0‘W(z)df].

5. Formulae for Theorem 6.1: Define w,’ = (u,.n,). the vector partial sum process S, =Xiw, and
the limiting covariance matrix

Q=lim;_ T 'E(S;S). reo.1].
According to the multivariate functional CLT of Phillips and Durlauf (1986) we have

(A21) T 'S, = B(r)
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where B(r) is 2-dimensional vector Brownian motion with covariance matrix {2. We also define
T t
. _ A Ap
Aetime T Y S Eo =3 3
=1 =1 21 2

Then, using the weak convergence theory in Phillips (1986) and Phillips and Durlauf (1986) we
obtain:

(A2)  Vol'= {(/OlBlde + An) - 32(1)4131}/1203

,{folryl - (1/2)[)131}{(1/2)32(1) - f0132>/03.

The differences in (A22) and (A20) stem from the fact that forecast errors can Granger cause
forecasts. (A20) treated the innovations as independent.
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